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Abstract. Spiking Neural Networks (SNNs) are regarded as the third generation of neural network models,
which can learn the precise spike trains of the stimuli. As speech signals exhibit strong temporal structure,
SNNs are a natural choice for learning temporal dynamics of the speech. Therefore, we propose a uni�ed
biologically plausible framework using spiking neurons with temporal coding and supervised learning to solve
the auditory attention problem. We further introduce momentum and Nesterov’s accelerated gradient into the
Remote Supervised Method to improve the performance and speed up the spike train learning. We evaluate
our model on Grid corpus and demonstrate that our model performs a precise spike train coding for auditory
attention and outperforms the baseline arti�cial neural networks.

Keywords: Cocktail Party Problem · Temporal coding · Remote supervised method.

1 Introduction

Attending to a specific speaker in a multi-talker environment is a trivial task that humans perform routinely, but
remains a fundamental challenge for the automatic speech recognition community. The general problem of separating
the target auditory signal from the competing input streams is referred to as Cocktail Party Problem [2], which
has attracted the interests of many researchers, as the underpinnings of which will contribute to efficient front-end
processors of automatic speech recognition. However, the exact neural mechanisms underlying the process are still
unclear.

Conventional artificial neural networks encode the stimuli using rate coding, which is a traditional coding scheme
assuming that the intensity of the stimuli is encoded by the average number of spikes within the encoding window.
However, the temporal structure is neglected in rate coding and a growing number of experimental results have
suggested that straightforward mean rate codes may be too simple to describe the complex brain activity [8]. When
extra information is carried by the precise temporal structure of a spike train, it’s referred to as temporal coding
[14]. Recent studies suggest that spike times might turn out to be general units of the sensory representation in
various systems of the brain, including auditory and visual systems [23, 6]. Spiking neural networks (SNNs) [11]
consider the spike timings of spike trains and thus are a natural choice to encode and learn the temporal structures
of complex sensory signals in speech perception. Nevertheless, there is little research concerning the application
of SNNs to Cocktail Party problem. Prior studies of application of SNNs use unsupervised learning and have no
training phase [26, 15, 25]. The core of these models are a two-layer oscillator network. Sources are separated in
terms of oscillator synchrony and desynchrony. However, they only work on isolated speech or simple cases, for
example, separating the mixture of two isolated human voice /di/ and /da/, which is impractical for real-world
scenarios. By formulating Cocktail Party Problem as a supervised learning problem, the discriminative patterns of
speech can be learned from the training corpus [27].

Besides, results of dichotic listening research support that humans are not able to listen to and remember two
concurrent speech, while they selectively attend to the target speech and ignore sounds from other sources in the
mixed signal [2, 13]. Obviously, this is more efficient and practical in the complex auditory scene, whereas previous
approaches mentioned above attempt to separate all the sources rather than attend to the target. Therefore, we are
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inspired to use an SNN with temporal coding and supervised learning from the perspective of speaker-dependent
auditory attention to solve Cocktail Party Problem.

Remote Supervised Method (ReSuMe) is a supervised learning algorithm proposed for SNNs that aims to produce
the desired precise time sequences of spikes. ReSuMe is proved to be an efficient supervised learning rule for SNNs,
which is greatly inspired by the biological mechanisms involved in learning and plasticity [16, 17]. ReSuMe makes
no assumption of the neuron model, thus it could work independently of any neuron model. In the following work,
ReSuMe is extended to apply to multi-layer SNNs from an alternative motivation when the neuron models are
restricted to linear stochastic neuron models [20], which reveals the relationship between ReSuMe and Stochastic
Gradient Descent (SGD). This allows us to consider introducing momentum and Nesterov’s accelerated gradient
[21] into ReSuMe learning rule to improve the performance and convergence of the learning process.

In this work, we propose a unified spiking neural network framework using temporal coding and supervised
learning for auditory attention. The main contributions of our work are three-fold: (1) To the best of our knowledge,
this is the first time that an SNN with temporal coding and supervised learning has been applied to auditory
attention. (2) We propose two novel temporal coding schemes to generate spatiotemporal patterns for auditory
attention task and compare the performance of different coding schemes. (3) We introduce momentum and Nesterov’s
accelerated gradient to accelerate the learning process of ReSuMe.

Fig. 1. The overall structure of our proposed framework. Our model uses di�erent temporal coding schemes to transform
the stimuli into spike trains that a spiking neural network can handle. Then the spiking neural network learns the mapping
of the mixture input spike trains to the target output spike trains. Finally the target signal is reconstructed according to the
output spike trains.

2 Methods

In this section, we attempt to apply a spiking neural network to speaker-dependent auditory attention task. We
described the model architecture, along with our proposed temporal coding schemes and the improved ReSuMe
learning rule.
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2.1 Model Architecture

Figure 1 shows the overall structure of the proposed framework. The framework contains three parts: temporal
coding, supervised learning and attentive tuning.

The temporal coding part converts the audio signal into spike trains so that an SNN can handle it. Given a raw
mixture input x, the model first transforms the signal into time-frequency domain Xt,f using Short-Time Fourier
Transformation (STFT). In order to ignore T-F bins that are not important to the source, T-F bins are maintained
only when they are greater than some background noise threshold. Then we perform K-Means clustering to map
the original continuous intensity information to D intensity levels. To further make the representation sparse and
speed up the learning process, T-F bins with the lowest intensity level are set to be silence units. Then we map the
remaining T-F bins to spike trains using the temporal coding schemes.

The supervised learning part is a feed-forward SNN. The neuron model is Leaky Integrate-and-Fire (LIF) model,
whose spike response function can be simply defined as �-function:

�(t) =
t

�
exp(1� t

�
)H(t); (1)

where the time constant � determines the rise and decay time of Postsynaptic Potential (PSP) and H(t) is the
Heaviside function. The membrane potential of the neuron is reset to the resting potential and held for the refractory
period �ref once it emits a spike. The number of input neurons m is determined by temporal coding schemes and
the frequency dimension F of Xt,f , while the number of output neurons n is solely determined by F . Note that m
is the same as or D � 1 times as many as n according to different temporal coding schemes. ReSuMe is used to
modify the synaptic weights.

In the attentive tuning part, the output spike trains are converted to an Ideal Binary Mask (IBM) as the
attention map to tune to the target signal in the mixture speech and produce the attended spectrogram. Finally,
the attended signal is reconstructed by inverse Short-Time Fourier Transformation (iSTFT).

2.2 Temporal Coding

Fig. 2. Spikes of neuron i encoding intensity level 2 at encoding window t0 and intensity level 3 at encoding window t1 when
D = 4. Pd denotes the dth neuronal population.

16 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 17, No. 2



4 Y. Huang et al.

Besides rate coding and temporal coding, population coding is another important coding scheme found in neuro-
science. Population coding assumes that the information is encoded by the joint activities of a number of imprecise
neurons rather than single precise neurons [14]. Inspired by neural coding mentioned above, we propose two novel
temporal coding schemes to generate spatiotemporal spikes for the auditory attention task, Temporal-Rate coding
and Temporal-Population coding. Temporal-Rate coding is a coding scheme that combines the ideas of rate coding
and temporal coding, while Temporal-Population coding is a coding scheme inspired by the ideas of population
coding and temporal coding. The intensity information is represented by the number of spikes for Temporal-Rate
coding and Temporal-Population coding. The difference between Temporal-Rate coding and Temporal-Population
coding is that Temporal-Rate coding distributes the spikes over the shift time of the sliding encoding window,
while Temporal-Population coding distributes the spikes over different neuronal populations. For example, suppose
that the intensity level D is set to be 4, then there will be 3 neuronal populations for Temporal-Population coding
because the T-F bins with the lowest intensity level are set to be silent, while there is only one neuronal population
for the conventional Time-to-First-Spike [22] and our proposed Temporal-Rate coding. Now we have 3 intensity
levels, namely 1,2,3. Assume that shift time of the sliding encoding window is 6 ms, and the onset of the current
time window is t0 ms. If a specific T-F bin corresponds to the current encoding window indexed by t0 of neuron i
in the neuronal population and its intensity level is 2, then for the Time-to-First-Spike case, neuron i will fire at
(t0 + 3) ms during the current encoding window; for the Temporal-Rate coding case, neuron i will fire 2 spikes at
t0 ms and (t0 + 3) ms, respectively; for the Temporal-Population coding case, neuron i of the first two neuronal
population will fire a spike at the onset t0 ms of the current time window respectively, while the corresponding time
window of the third neuronal population will stay silent. Suppose that the following encoding window t1 encoding
a T-F bin with intensity level 3, neuron i will fire at (t1 + 1:5) ms for Time-to-First-Spike, and will fire 3 spikes at
t1 ms, (t1 + 2) ms, (t1 + 4) ms for Temporal-Rate coding; for Temporal-Population coding, neuron i of all the three
population will fire at t1 ms. See Figure 2 for an illustration.

2.3 Accelerating ReSuMe Learning

Consider a fully connected feed-forward SNN with two layers of stochastic linear neurons, identified as I (Input)
and O (Output). The synaptic weight update between output neuron o 2 O and input neuron i 2 I according to
ReSuMe learning rule is given as:

�woi(t) = [Sdo (t)� Sao (t)][a+

Z 1
0

W (s)Si(t� s)ds]; (2)

where Sdo (t), Sao (t) and Si(t) denote the desired output spike train, actual output spike train and input spike train,
respectively; a represents the non-Hebbian term; W (s) defines the learning window:

W (s) =

�
+A � exp( �sτwin

) ; if s > 0

0 ; if s � 0
; (3)

where s is the time difference of the postsynaptic and presynaptic firings, A > 0 is the amplitude and �win is the
time constant of the learning window. For simplicity, the learning window is set to zero when presynaptic spikes
fire after postsynaptic spikes, because the anti-causal order of spikes contributes nothing to the success of learning
[16, 17]. The total weight change �woi is given by integrating Eq. (2) over the time course.

Inspired by the successful practice of SGD combined with momentum and Nesterov’s accelerated gradient in
training artificial neural networks [21], we introduce momentum and Nesterov’s accelerated gradient to the weight
update of ReSuMe learning rule in order to improve convergence and get around of local minima. Note that the
addition of momentum is not a direct application of [21]. Momentum and Nesterov’s accelerated gradients are
originally used in SGD to accelerate the learning process. However, the weight update in ReSuMe learning rule is
not a gradient. Only when we use linear stochastic neuron models can we get the similar form between ReSuMe
and SGD, and add the momentum term and Nesterov’s accelerated gradient into ReSuMe learning rule.

Stochastic Gradient Descent with Momentum (SGDM) [18] is a first-order optimization method that accelerates
SGD using the combination of the current gradient update and the previous update, the momentum. Adding the
momentum to the ReSuMe learning rule, the velocity vector vkoi can be updated by:

vk+1
oi = �vkoi + ��wkoi; (4)
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where k represents the kth iteration, � 2 [0; 1] is the momentum coefficient and � is the learning rate. Nesterov’s
Accelerated Gradient (NAG) [12] is also a first-order optimization method with better convergence rate under
certain conditions. The velocity vector in NAG is computed by:

vk+1
oi = �vkoi + ��wkoijwk

oi=w
k
oi+βv

k
oi
; (5)

where �wkoijwk
oi=w

k
oi+βv

k
oi

is the gradient at wkoi + �vkoi. By adding (4) or (5) to wkoi, we introduce the momentum
term or NAG to ReSuMe learning rule.

From Eqs. (4) and (5), we see that the methods differ in how the velocity vector is computed. Note that though
the ReSuMe learning rule is biologically plausible, the augment of the momentum term and Nesterov’s accelerated
gradient is only from the perspective of mathematics to find better solutions, thus it has little to do with biological
plausibility. For convenience, hereafter we refer to the naive ReSuMe as ReSuMe, ReSuMe with Momentum as
ReSuMe-M and ReSuMe with Nesterov’s accelerated gradient as ReSuMe-NAG.

3 Experimental Setup

3.1 Dataset and Task

The speaker-dependent auditory attention task is conducted on a subset of Grid corpus [4]. Grid corpus is a
multi-talker audio-video sentence corpus aimed to support the research of speech perception. We randomly select
audio clips of a female and a male speakers from the corpus, each with 20 utterances. The utterances per speaker
is split into three parts, 10 utterances to generate the train set, 5 utterances to generate the validation set and 5
utterances to generate the test set. We mix two speakers’ utterances for each part respectively in order to get the
mixture speech. Finally, there are 100 mixture speech in the train set, 25 mixture speech in the validation set and
25 mixture speech in the test set. The samples are clipped to 0.5 s for alignment. All the data are resampled to 8
kHz and normalized to reduce the computation cost. STFT with 32 ms window length, 16 ms shift time and sine
window are applied to get the spectrogram Xt,f . Following [9], the background noise threshold is set to -40 dB of
the source’s maximum magnitude. After clustering and setting silence units, the remaining T-F bins are mapped
into spike trains according to different coding schemes. The spike trains are the input features for our spiking neural
network model.

The goal of our speaker-dependent auditory attention task is to attend to the target speaker, the female speaker,
from the mixture speech. We further compare the performance of our model with the two-layer baseline artificial
neural network models, namely Multi-layer Perceptron (MLP), Recurrent Neural Network (RNN) and Long-Short
Term Memory (LSTM) [10]. The number of input neurons and output neurons are determined by the frequency
dimension F of the spectrogram Xt,f . The spectrogram Xt,f is served as input features for the baseline models.
The mask used by the baseline models is Ideal Ratio Mask (IRM), which is reported to gain better performance
compared to IBM for the artificial neural networks [28]. The model architecture of our model and the baseline
models are listed in Table 1.

Table 1. Experimental con�gures. TF, TR and TP denote Time-to-First-Spike, Temporal-Rate coding and Temporal-
Population coding, respectively. F represents the frequency dimension of the spectrogram Xt,f and D represents the intensity
level.

Ours (TF,TR)/
baseline (MLP, RNN, LSTM)

Ours (TP)

Number of input neurons m F F (D − 1)
Number of output neurons n F F

3.2 Hyperparameter Settings

For simplicity, we set the resting potential to 0 and the threshold potential to 1 for LIF model. Other hyperpa-
rameters with respect to temporal coding schemes are found by validation, see Table 2 for details. The following
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experiments are all based on these experimental settings. We optimize our model with initial learning rate 0.05
and decrease it by a factor of 0.95 if the distance between the desired output spike trains and the actual output
spike trains on train set increases for over 5 epochs. The coefficient � in ReSuMe-M and ReSuMe-NAG is set as
0.9. The model is evaluated on the validation set every 5 epochs and early stopping strategy due to GNSDR [24]
with patience of 15. The baseline models are optimized using the same optimization methods with early stopping
strategy. All the results are calculated by averaging over 5 trials with random initialization.

Table 2. Hyperparameters of our model with respect to di�erent coding schemes.

Coding schemes � �ref �win D

Time-to-First-Spike 0.10 0.80 0.80 9
Temporal-Rate coding 0.60 0.80 0.60 8
Temporal-Population coding 0.45 0.80 0.70 10

4 Results and Analyses

4.1 E�ects of Coding Schemes

To compare the performance of different coding schemes, we conduct experiments using ReSuMe and report GNSDR
scores on our test set. Table 3 shows GNSDR results of different coding schemes and different optimization methods.
We can see from the first row (ReSuMe) that among all the coding schemes, there are significant gaps between
the performance of Time-to-First-Spike and those of Temporal-Rate coding and Temporal-Population coding. It
suggests that Time-to-First-Spike is too simple to encode the complex sounds in the Cocktail Party Problem.
Furthermore, Temporal-Population coding performs the best and attains a comparatively stable performance. We
postulate that this is due to the fact that Temporal-Population coding uses a population of neurons to encode the
intensity of the stimuli, which is more robust to noise and small weight changes compared to single-neuron coding
like Temporal-Rate coding and Time-to-First-Spike. For single-neuron coding, Temporal-Rate coding represents the
intensity information by the number and precise position of spikes in an encoding window, while Time-to-First-Spike
represents the information only by the latency of a single spike to the onset, for which the strongest intensity may
be transferred to the weakest intensity due to small disturbances and thus lead to bad performance.

Table 3. GNSDR scores (mean±stdev) of our model and baseline models on test set for speaker-dependent auditory attention.

Methods Ours (TF) Ours (TR) Ours (TP)

ReSuMe 1.81±0.31 3.71±0.32 4.04±0.27
ReSuMe-M 2.16±0.21 4.03±0.29 4.41±0.29
ReSuMe-NAG 2.20±0.24 4.54±0.23 4.23±0.20

Methods MLP RNN LSTM

SGD 3.70±0.07 3.56±0.06 3.80±0.03
SGDM 3.72±0.07 3.58±0.05 3.94±0.07
NAG 3.74±0.06 3.58±0.05 3.94±0.06

4.2 E�ects of Optimization Methods

In order to verify the effectiveness of momentum and Nesterov’s accelerated gradient, we conduct experiments
optimized by ReSuMe-M and ReSuMe-NAG. As shown in Figure 3(a) and Table 3 on the top, ReSuMe-M and
ReSuMe-NAG greatly speed up the learning speed for our model and improve the performance to some extent
compared to ReSuMe. GNSDR scores suggest that ReSuMe-M and ReSuMe-NAG converge to better solutions
than ReSuMe under all the coding schemes for our task, among which ReSuMe-NAG is better for Temporal-Rate
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coding, ReSuMe-M is better for Temporal-Population coding and no significant difference for Time-to-First-Spike
using ReSuMe-M or ReSuMe-NAG. While for Time-to-First-Spike, there is no significant improvement in learning
speed, both ReSuMe-M and ReSuMe-NAG greatly speed up the learning process when the stimuli are encoded by
Temporal-Rate coding or Temporal-Population coding. We observed similar results on the learning speed of the
baseline models, see Figure 3(b). In comparison with the baseline models, the average of GNSDR scores under
Temporal-Rate coding and Temporal-Population coding are mostly greater than the results of the two-layer baseline
models. Though the variances are a bit larger comparatively, it is probably due to the characteristic of SNNs, which
is sensitive to precise spike trains. Furthermore, MLP slightly performs worse than LSTM but better than RNN.
Similar results can be found in the previous work [3].

4.3 E�ects of Intensity Level

As shown in Table 3, our model under Temporal-Rate coding and ReSuMe-NAG gets the best performance among all
the experimental settings. We further choose ReSuMe-NAG as the default optimization method and report GNSDR
scores of different intensity levels encoded by Temporal-Rate coding or Temporal-Population coding to investigate
the effects of intensity level during the encoding phase. We vary the intensity level D around the optimal value for
Temporal-Rate coding and Temporal-Population coding, respectively and fix other hyperparameters. As shown in
Figure 4, neither too small nor too high values of D are optimal, as they perform unstably. If the value of intensity
level is too small, the number of discrete intensity levels are not sufficient to represent the complex auditory stimuli.
If the value is too large, the computation cost will become relatively expensive. For the Temporal-Rate coding case,
the total number of spikes will increase; for the Temporal-Population coding case, as the intensity level D is one
of the factors that influence the number of input neurons, bigger value will lead to more synaptic weights. When
the intensity level takes a moderate value, our model achieves a stable performance with comparatively high mean
GNSDR scores and small variances.

(a) Our model (b) Baseline models

Fig. 3. The average epochs needed for convergence of (a) our model and (b) baseline models with respect to di�erent
optimization methods.

5 Discussion

With the introduction of the momentum term and Nesterov’s accelerated gradient, our model encoded by Temporal-
Rate coding or Temporal-Population coding outperforms the baseline models. It is notable that ReSuMe-M and
ReSuMe-NAG improve the performance of our model quite a lot in comparison with our model optimized by naive
ReSuMe. We infer that this is due to the digital implementation (computation in discrete time) of SNNs, which
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(a) Temporal-Rate coding case (b) Temporal-Population coding case

Fig. 4. Mean and standard deviation of the GNSDR scores in (a) the Temporal-Rate coding case and (b) the Temporal-
Population coding case with respective to di�erent intensity levels.

leads to a rough error surface with many false local minima. These false local minima could cause poor performance
of nonlinear learning methods [5]. Momentum and Nesterov’s accelerated gradient solve this problem by getting rid
of the local minima to some extent and therefore improve the performance. Comparing Temporal-Rate coding and
Temporal-Population coding, it is undeniable that the number of parameters of Temporal-Population coding are
several times larger than that of Temporal-Rate coding and Temporal-Population coding is much time-consuming
under the same configuration. We further choose ReSuMe-NAG as the default optimization method and investigate
the effect of intensity level during the encoding phase under Temporal-Rate coding and Temporal-Population coding,
and show that with the moderate intensity level, we are able to get a relatively high-quality stable performance.

Our proposed supervised spiking neural networks using temporal coding differs from the previous mentioned
unsupervised spiking neural networks, two-layer oscillator network model [26, 15, 25] completely. The basic unit
for the oscillator networks is a neural oscillator, while the basic unit for our model is a stochastic linear neuron
model, for example, LIF model. The oscillator network model is CASA-based, which contains two main phases,
segmentation and grouping. In an oscillator network model, the signal preprocessed by the auditory peripheral
model is described by the activity of oscillators. Oscillators belonging to the same source will synchronize, while
oscillators belonging to other sources will desynchronize. Whereas our work is a sequence-to-sequence model that
learns a function about mapping the mixture to the attended speech. Moreover, as mentioned before, the oscillated
neural networks only work in very simple cases, but our model are able to handle the multi-talker continuous speech
cases.

Though there is still a great gap between the performance of our proposed model and those of conventional
deep learning based models [9, 1, 29], our investigation demonstrates the potential of spiking neural networks. As
the spiking neural network is a natural choice for learning the temporal dynamics of speech, it’s possible that incor-
porating other biologically plausible mechanisms will improve the performance of our model. Notice that auditory
attention in this paper is stimulus-driven bottom-up attention, thus it’s straightforward to consider introducing
task-driven top-down attention into the model to modulate the responses of the neurons or neuronal populations
according to the given task. What’s more, since visual input enhances the auditory processing in the Cocktail Party
Problem [7], it’s also possible to integrate the visual information of the talking faces into the recent task.

6 Conclusion and Future Work

In this work, we proposed a unified biologically plausible computational model using spiking neurons and two novel
temporal coding schemes for auditory attention task. Then we introduced momentum and Nesterov’s accelerated
gradient to ReSuMe learning rule to improve the performance and learning speed. We showed that our model
outperformed the baseline artificial neural networks, demonstrating the potential of spiking neural networks in
solving auditory attention task. Our work attempts to provide a new way to solve the Cocktail Party Problem from
a more biological point of view. In future works, we hope to incorporate other brain-inspired mechanisms into our
model to further improve the performance of auditory attention, for example, top-down attention and visual inputs.
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Appendices

A Relationship between ReSuMe and Stochastic Gradient Descent

In order to make the relationship of ReSuMe and Stochastic Gradient Descent more intuitive, we will give the
detailed derivation of ReSuMe learning rule for the two-layer spiking neural network from an alternative motivation
following [20] in this section.

Consider a fully connected feed-forward spiking neural network with two layers of stochastic linear neurons,
identified as I (Input) and O (Output). The instantaneous network error is defined as the least square error function:

E(t) =
1

2

X
o2O

[Rao(t)�Rdo(t)]2; (6)

where Rao(t) and Rdo(t) represent the actual instantaneous firing rate and the desired instantaneous firing rate at
time t, respectively. Note that the instantaneous firing rate of a neuron can be regarded as the expectation of
concrete spike trains over infinite trials:

R(t) = limM!1
1

M

MX
j=1

Sj(t); (7)

where M denotes the number of the trials and Sj(t) is the concrete spike train in a trial. The spike train S(t) has
the following form:

S(t) =
X
f

�(t� tf ); (8)

where tf denotes the fth spike in the spike train and �(x) is the Dirac function with �(t) = 0 for t 6= 0 andR1
�1 �(t)dt = 1. The instantaneous firing rate of output neuron o 2 O, the probability density of firing at time t, is

determined by the instantaneous firing rate of the input neurons i 2 I:

Ro(t) =
1

ni

X
i2I

woiRi(t); (9)

where woi represents the weight between the output neuron o and the input neuron i, ni represents the number of
neurons of the input layer. In order to minimize the network error, we modify the weights according to gradient
descent algorithm,

�woi(t) = �� @E(Rao(t))

@woi
; (10)

where � is the learning rate. For the simplicity of the derivation, let � = 1 in the following equations. Applying the
chain rule, we get:

@E(Rao(t))

@woi
=
@E(Rao(t))

@Rao(t)

@Rao(t)

@woi
: (11)

According to the objective function, Eq. (6), the first term in the right hand of Eq. (11) is:

@E(Rao(t))

@Rao(t)
= Rao(t)�Rdo(t): (12)
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From expression in Eq. (9), the second term can be derived as:

@Rao(t)

@woi
=

1

ni
Ri(t): (13)

Combining the above results, we have:

�woi = � 1

ni
[Rao(t)�Rdo(t)]Ri(t): (14)

Since we have only a single spike train S(t), we substitute the unknown instantaneous firing rate R(t) with S(t).
Thus the weight change is modified according to:

�woi =
1

ni
[Sdo (t)� Sao (t)]Si(t): (15)

The nonlinear product of Si(t)S
d
o (t) can be interpreted as an STDP process triggered by the temporal correlation

of presynaptic spike train Si(t) and the desired postsynaptic spike train Sdo (t). Likewise, the nonlinear product of
�Si(t)Sdo (t) can be interpreted as an anti-STDP process over the presynaptic spike train Si(t) and actual postsy-
naptic spike train Sao (t). Now let:

Si(t)S
d
o (t)!Si(t)[a+

Z 1
0

W (s)Sdo (t� s)ds]

+Sdo (t)[a+

Z 1
0

W (s)Si(t� s)ds];
(16)

Si(t)S
a
o (t)!Si(t)[a+

Z 1
0

W (s)Sao (t� s)ds]

+Sao (t)[a+

Z 1
0

W (s)Si(t� s)ds];
(17)

where the constant a is the non-Hebbian term, s is the time difference of the postsynaptic and presynaptic firings.
The kernel W (s) defines the so-called learning window:

W (s) =

�
+A � exp( �sτwin

) ; if s > 0

0 ; if s � 0
; (18)

where A > 0 is the amplitude and �win is the time constant of the learning window. The learning window is set
to zero when presynaptic spikes fire after postsynaptic spikes, because the anti-causal order of spikes contributes
nothing to the success of learning [16, 17]. Then Eq. (15) takes the following form if we ignore the factor of 1

n :

�woi(t) = [Sdo (t)� Sao (t)][a+

Z 1
0

W (s)Si(t� s)ds]; (19)

which is the original ReSuMe rule. The total weight change is given by integrating Eq. (19) over the time course:

�woi =

Z
�woi(t)dt: (20)

From the above derivation, it’s reasonable to introduce the momentum term and Nesterov’s gradient into ReSuMe
learning rule.

B Spike distance between two spike trains

In our experiments, we decrease the learning rate if the distance between the desired spike trains and the actual
spike trains increases for over 5 epochs. The distance is defined as the van Rossum distance [19], the Euclidean
distance of two filtered spike trains:

f(t) =
X
i

exp(
�(t� ti)

�c
)H(t� ti); (21)
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D2(f; g) =
1

�c

Z T

0

[f(t)� g(t)]2dt; (22)

where ti are the spike times and H(t) is the Heaviside function; �c is the time constant of the exponential function,
which is fixed as 5 ms in our experiments.

References

1. Chen, Z., Luo, Y., Mesgarani, N.: Deep attractor network for single-microphone speaker separation. In: 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 246{250 (March 2017).
https://doi.org/10.1109/ICASSP.2017.7952155

2. Cherry, E.C.: Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical
Society of America 25(5), 975{979 (1953)

3. Chien, J.T., Kuo, K.T.: Variational recurrent neural networks for speech separation. In: INTERSPEECH. pp. 1193{1197
(2017)

4. Cooke, M., Barker, J., Cunningham, S., Shao, X.: An audio-visual corpus for speech perception and automatic speech
recognition. Journal of the Acoustical Society of America 120(5), 2421{2424 (2006)

5. Fujita, M., Takase, H., Kita, H., Hayashi, T.: Shape of error surfaces in spikeprop. In: IEEE International Joint Conference
on Neural Networks. pp. 840{844 (2008)

6. Gollisch, T., Meister, M.: Rapid neural coding in the retina with relative spike latencies. Science 319(5866), 1108{1111
(2008)

7. Golumbic, E.Z., Cogan, G.B., Schroeder, C.E., Poeppel, D.: Visual input enhances selective speech envelope tracking in
auditory cortex at a "cocktail party". Journal of Neuroscience the O�cial Journal of the Society for Neuroscience 33(4),
1417 (2013)

8. Gutig, R.: To spike, or when to spike? Current Opinion in Neurobiology 25, 134{139 (2014)
9. Hershey, J.R., Chen, Z., Roux, J.L., Watanabe, S.: Deep clustering: Discriminative embeddings for segmentation and

separation. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 31{35
(March 2016). https://doi.org/10.1109/ICASSP.2016.7471631

10. Huang, P.S., Kim, M., Hasegawa-Johnson, M., Smaragdis, P.: Deep learning for monaural speech separation. In: IEEE
International Conference on Acoustics, Speech and Signal Processing. pp. 1562{1566 (2014)

11. Maas, W.: Networks of spiking neurons: the third generation of neural network models. Society for Computer Simulation
International (1997)

12. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). In: Soviet
Mathematics Doklady (1983)

13. O’Sullivan, J.A., Power, A.J., Mesgarani, N., Rajaram, S., Foxe, J.J., Shinncunningham, B.G., Slaney, M., Shamma,
S.A., Lalor, E.C.: Attentional selection in a cocktail party environment can be decoded from single-trial eeg. Cerebral
Cortex 25(7), 1697 (2015)

14. Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C.: Sensory neural codes using multiplexed temporal scales. Trends in
Neurosciences 33(3), 111{120 (2010)

15. Pichevar, R., Rouat, J.: Monophonic sound source separation with an unsupervised network of spiking neurones. Neuro-
computing 71(1), 109{120 (2006)

16. Ponulak, F.: Resume-new supervised learning method for spiking neural networks. Institute of Control and Information
Engineering, Poznan University of Technology 42 (2005)

17. Ponulak, F., Kasinski, A.J.: Supervised learning in spiking neural networks with resume: Sequence learning, classi�cation,
and spike shifting. Neural Computation 22(2), 467{510 (2010)

18. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural Networks 12(1), 145 { 151 (1999)
19. Rossum, M.: A novel spike distance. Neural Computation 13(4), 751{763 (2001)
20. Sporea, I., Gruning, A.: Supervised learning in multilayer spiking neural networks. Neural Computation 25(2), 473{509

(2013)
21. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initialization and momentum in deep learning.

pp. 1139{1147 (2013)
22. Tuckwell, H., Wan, F.: Time to �rst spike in stochastic hodgkinhuxley systems. Physica A: Statistical Mechanics and its

Applications 351, 427{438 (06 2005). https://doi.org/10.1016/j.physa.2004.11.059
23. Vanrullen, R., Guyonneau, R., Thorpe, S.J.: Spike times make sense. Trends in Neurosciences 28(1), 1{4 (2005)
24. Vincent, E., Gribonval, R., Fevotte, C.: Performance measurement in blind audio source separation. IEEE Transactions

on Audio Speech & Language Processing 14(4), 1462{1469 (2006)
25. Wang, D., Chang, P.: An oscillatory correlation model of auditory streaming. Cognitive Neurodynamics 2(1), 7 (2008)

24 ICONIP2019 Proceedings

Australian Journal of Intelligent Information Processing Systems Volume 17, No. 2



12 Y. Huang et al.

26. Wang, D.L., Brown, G.J.: Separation of speech from interfering sounds based on oscillatory correlation. IEEE Transactions
on Neural Networks 10(3), 684{697 (1999)

27. Wang, D.L., Chen, J.: Supervised speech separation based on deep learning: An overview. IEEE/ACM Transactions on
Audio Speech & Language Processing PP(99), 1{1 (2018)

28. Wang, Y., Narayanan, A., Wang, D.L.: On training targets for supervised speech separation. IEEE/ACM Transactions
on Audio Speech & Language Processing 22(12), 1849{1858 (2014)

29. Yu, D., Kolbaek, M., Tan, Z., Jensen, J.: Permutation invariant training of deep models for speaker-independent multi-
talker speech separation. international conference on acoustics, speech, and signal processing pp. 241{245 (2017)

ICONIP2019 Proceedings 25

Volume 17, No. 2 Australian Journal of Intelligent Information Processing Systems


	275
	455
	59
	54
	625
	517
	297
	245
	Dissect Sliced-RNN in Multi-Attention View

	363
	Discovering Sequences in Systems Logs by Neural Networks




